If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+10y-325=0
a = 2; b = 10; c = -325;
Δ = b2-4ac
Δ = 102-4·2·(-325)
Δ = 2700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2700}=\sqrt{900*3}=\sqrt{900}*\sqrt{3}=30\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-30\sqrt{3}}{2*2}=\frac{-10-30\sqrt{3}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+30\sqrt{3}}{2*2}=\frac{-10+30\sqrt{3}}{4} $
| 3x-4+4x-20=180 | | 4x-23=4x-23 | | 4(y+9)=4(y-9) | | 21/36=28/36m | | -9+4|5+10n|=91 | | 2x-16+12x=180 | | -2(2y+8)=4y+5+y= | | .6b+5=20−b | | r−64=3 | | -4(y+7)=2(-2y-9)-10 | | 144=5x+4 | | 5/2(6w-16)=18w-(3w+4) | | 15x1,800=270 | | 5x+4+144=180 | | y−13/2=2 | | 2x+4+140=180 | | x-5.6-3=0 | | 2x-19=x+13 | | 2a^2-2a=40 | | v+4/4=4 | | 8x-15x=21 | | 2a^2-2a=20 | | 5=w/3+4 | | x-5.6=-3. | | 5=w3+4 | | 5=w3+ 4 | | m^2+16m=4 | | 92=-42(2r-5) | | 6x+4º=4x-14º | | 3/2x=4-2x | | 9=-6−6+u | | 15+0.75x=9 |